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Discrete-rate spectrum balancing in interference-limited multi-user and multi-carrier
digital subscriber lines (DSL) is a large-scale, non-convex and combinatorial problem.
Previously proposed algorithms for its (dual) optimal solution are only applicable for
networks with few users, while the suboptimality of less complex bit-loading algo-
rithms has not been adequately studied so far. We deploy constrained optimization
techniques as well as problem-specific branch-and-bound and search-space reduction
methods, which for the first time give a low-complexity guarantee of optimality in
certain multi-user DSL networks of practical size. Simulation results precisely quantify
the suboptimality of multi-user bit-loading schemes in a thousand ADSL2 scenarios
under measured channel data.
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1. Introduction

We study the dynamic spectrum management (DSM)
problem of optimal power allocation in interference-limited
multi-user and multi-carrier digital subscriber line (DSL)
systems with a finite set of transmission rates per subcarrier.
Recent scalable approaches for optimal DSM are based on a
Lagrange relaxation (LR) of the coupling sum-rate and sum-
power constraints, resulting in independently solvable per-
subcarrier problems. We propose novel branch-and-bound
(BnB) and search-space reduction techniques which reduce
the complexity of optimally solving these combinatorial per-
subcarrier power control problems. Our optimization objec-
tive subsumes weighted sum-rate maximization and sum-
power minimization as special cases. We emphasize that the
studied combinatorial power control problem and our dis-
crete search techniques are also of interest in other
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application domains where interference plays a role, such
as in multi-user wireless networks [1-3].

A dual optimal multi-user DSM algorithm with discrete
power levels was first proposed in [4], where an exhaustive
search was applied to solve the per-subcarrier problems. In
[5] we proposed a robust modification where the exhaustive
search was made more efficient by avoiding the evaluation of
infeasible rate combinations. A BnB algorithm for optimal
per-subcarrier solutions was proposed in [6], although the
BnB search had an exponential complexity in terms of time
and memory, and asymmetric DSL (ADSL) downstream
scenarios were only simulated for up to eight users. Optimal
continuous power allocation has been studied for example in
[7-10], where in [7] dual optimal results were presented for
up to eight users in very high speed DSL (VDSL) scenarios.
A traditional approach for discrete-rate DSM is discrete bit-
loading (DBL) [11]. Various optimal DBL algorithms have
been proposed in the single-user case, see [12,13] and
references therein. However, only a few heuristics have been
described in the multi-user case [14-16]. To the best of our
knowledge, no study has up to now investigated the precise
suboptimality of such multi-user bit-loading schemes in a
larger set of scenarios.
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Our main contribution is a low-complexity optimal
discrete-rate allocation method for the per-subcarrier
power control problems, which can be integrated in
existing LR based multi-carrier DSM schemes. It consists
of problem-specific implementations of two mechanisms
which are generic parts of a modern nonlinear discrete
problem solver [17,18]: a BnB framework and a variable-
range reduction technique. After introducing the system
and optimization model in Section 2 we propose in
Section 3 two BnB schemes which show favorable com-
putational and memory complexity to that previously
proposed in [6]. The key feature of our BnB schemes is
that maximum bit-loading information is passed between
neighboring nodes in the BnB search-tree in order to
reduce the number of infeasible rate evaluations. In
Section 4 we suggest a low-complexity optimal search-
space reduction (SSR) scheme based on a partly inter-
ference-free convex relaxation of the per-subcarrier pro-
blems. In the context of the related integer programming
literature [17,19-21] our SSR scheme can be interpreted
as a low-complexity, relaxation specific, nonlinear, objec-
tive-based [19] variable range reduction technique. Our
SSR scheme is seen to be most effective in scenarios with
low levels of crosstalk, e.g., low-bandwidth DSL systems
or DSM problems with low target sum-rates. Simulation
results are presented in Section 5, where we motivate our
problem-specific approach by a comparison to a general-
purpose solver for mixed-integer non-convex problems
[18], investigate the effectiveness of the proposed techni-
ques individually, and demonstrate the effect of target
sum-rates on the solution complexity in a 16 user ADSL2
scenario. Furthermore, we analyze the sum-rate perfor-
mance of a classical greedy multi-user DBL algorithm [14]
for which we provide for the first time precise suboptim-
ality figures in a thousand ADSL2 networks using mea-
sured channel data from [22]. Conclusions of this work are
drawn in Section 6.

2. Problem formulation
2.1. System model

We consider an interference-limited multi-carrier DSL
system with U lines and C subcarriers, and denote the sets
of indices for users and subcarriers by ¢/ ={1,...,U} and
C={1,...,C}, respectively. We denote by p{ the power
spectral density (PSD), by N, the received noise spectral
density, and by H;,, and H;; the squared magnitudes of the
channel coefficient of user u and from user i to user u,
respectively, on subcarrier c. We use the gap-approxima-
tion in [11] and write the achievable rate per symbol for
user u € U on subcarrier ¢ € C as

I'(CicruHub§ +Ny)

ro(p°) = log, <l +

where p¢ =[pS,...,p{]" and where I' is the SNR-gap. We
will compactly write all users’ rates as r¢(p‘)=
[ @°), ....r5P9)]T and use pS(r) to denote the unique
[23] power allocation resulting in the rate vector r¢. This
power pc(r°) can be computed as the solution of a matrix

equation [4] where the matrix as well as the right-hand-
side vector depend on r¢. Considering a regulatory power
spectral mask p; and a bit-cap f we can express the
feasible set of PSD’s on subcarrier ¢ which yield discrete
rates as

QF = {p|r§(p) € B, p§, € [0, Pyl u € U}, )

where B={0,0, ...,0} is the set of possible bit-allocations
per subcarrier and user. Correspondingly we define the
set of all users’ possible rates per subcarrier as £ = xy¢/B,
the set of feasible rates by Qf ={r¢ e £|p°(r‘) € 9}, and
the set of infeasible rates by Q, = {r° € £|r‘¢ Q%}. Note that
this work can be readily extended to more general (finite)
sets B.

2.2. Primal optimization problem

We focus on a generic U user DSM problem with target
sum-rates Re RY and maximum sum-power P e RY
given by [4,6,24]

P* — minimi C YW
&, = Minimize ;f(p W) (Ga)
subject to > r(p) =R, 3b)
ceC
> P=P, (30)

ceC

where the objective is a weighted-sum defined by
O W) = WP W (P, cec, @

where ww ¢ R‘i are constant weights. Special cases of
this objective are the users’ sum-rate or sum-power.

2.3. Dual optimization problem

The classical approach for dealing with the constraints in
(3b) and (3c) for systems with a large number of subcarriers
C is Lagrange relaxation [25] of these constraints, resulting in
the dual problem to (3) defined as (cf. [4])

D p, = maximize q*'(4,v), (5)
! A=0,v=0
where 4,v € RY are the Lagrange multipliers associated with

constraints (3b) and (3c), respectively, and where the dual
function is defined as [25]

a4y = g v+ R-VP, (6)
ceC

q“(Av)= mig (F°5W +v,W+4)), Veec. 7
peeQ’

Our contribution is the proposal of optimal methods for
solving the decomposable dual subproblems in (7) and the
analysis of the suboptimality of greedy multi-user bit-loading
[14] using the proposed optimal methods. The optimal dual
objective kavp) lower-bounds the optimal primal objective
an,m in (3a) as given by the weak duality inequality [25]
D{g p) < P(g p)- This relation will be used in the analysis of the
suboptimality of two greedy multi-user bit-loading algo-
rithms in Section 5.5, namely the multi-user scheme in [14]
and single-user bit-loading considering the worst-case
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Algorithm 1. DFB tree search.

Algorithm 2. Search-space reduction scheme.

1 [r*f*f°] = DFBSearch(r®,4,v,d)

2: Initialization— bEnd = false, r=0, u =1, bRet=false, £ =10,
pmin =0, Ib= —o0, ™ =F, B™ =B =[0,], f* = oo,

3: if0<pr®)<p and f(p(r®),W+v,w+4) <0 then

4 Set incumbent r* =10, f* = f(p(r°),W+v,W+4)

5: else Set incumbent r* =0, f*=0

6: [Bys1u.p™" %R = SSR(A,v,r,i"™,0,f*)

7: while —bEnd

8: Start search at r=B.; —Update Allocation
9: if bRet then Set r, =1, +0 and bRet=false
10: if r, > min{;"",B""} then bRet=true else
11: if 0<p(r)<p then Set p™" = p(r)
12: if f(p(r),w+v,w+4) < f* then
13: r* =r, f* = f(p(r*), W+ v,W+4)
14: else bRet=true, ;"> =r,—0
15: if — bRet then — Bounding
16: (B, ;. P™", 6] = SSR(A,v,r, "™ 1, f*)
17: if u < U then
Ti, 1<i<u,
= { min{#™" B3P}, u+1<i<U

18: Ib =" (p™in r™ax), ¢f. (10), Ib = max{lb,Ib>}}
19: if [b > min{f*,®} then Branching
20: Set bRet=true, f’b = min(f”’,lb}

21: elseu=u+1

22: else Set r, =B, 1, u=u-—1

23: ifu<Uthent,,;=B,,1>

24: if u =0 then bEnd=true

25: if f* < @ then f =f*

crosstalk based on the spectral mask constraints. Comple-
menting our simulation study on the suboptimality of greedy
bit-loading in the multi-user case, the following theorem
establishes primal optimality of greedy bit-loading in the
special case of a single user.

Theorem 1. For U =1 greedy bit-loading is optimal and it
holds that Pjgp =Djgp, YRe {ReRV[Ru=k-0ke 2,
Yu e U}.

See Appendix A for a proof. Theorem 1 extends a
previous result on the optimality of single-user bit-load-
ing [12] to a more general objective.

We will now study the problem in (7) in the general
multi-user case and drop the subcarrier index ¢ through-
out the rest of the paper for ease of notation. Also, to
facilitate an intuitive understanding of the algorithms
proposed in the following we rephrase the problem in
(7) in terms of rates as

minilénizef(p(r),v'v +V,W+4). 8)
reQr

The complete proposed method for solving the problem in
(8), which will be described in the Sections 3 and 4, can be
found in detail in Algorithms 1 and 2. It consists of two
interrelated parts, where the first one is a technique to
reduce the search space Q, by reasoning based on a fast

10 B, P L= SSR(Z,v,rinit £ ) £y
2: Initialize p = p(r™®), p™" =p, p =p, T ="t

3: Find the discrete optimum without crosstalk :
4: Compute N e RV, Ny =N+, _;_ Hyp;vieu
5: Repeat Vi e U\{1,..., u} Equations (B.2)-(B.4)
6
7
8

L=wW+v)'p—wW+A4)'T,Setr=T
while (p(r)¢Q) do r; = max{0,r;—0},u<i<U
L'Teet — min{f* f(p(r),W +v,W+ 1)}

9: Find the restricted search-region aroundr :
10: fori=u+1,..., U do
11:  Setr=r, Increase r; in steps of 6 until r; > #{™
or (W+v) p—(W+24)r > L% with
pi=pi@™),i € [1,ul,p; =p;™(r;) as in (B.3),i e U\[1,u],
12: BYP=r—0,r=r
13: Decrease r; in steps of 0 until r; <0 or
W+ p—W+A)Tr > L% with
pi=pi@™),i € [1,u],p; = p{™ () as in (B.3),i € U\[1,u],
14:  BYP =r;+0, pMn = p™(r;+0)

solvable convex problem relaxation. The second part is a
branch-and-bound search scheme which serves to effi-
ciently explore the reduced search space and to return a
provably optimal solution to the problem in (8). We
emphasize that our contribution does not depend on the
specific algorithm which generates the Lagrange multi-
pliers 4 and v and is therefore also applicable to previous
work on DSM algorithms. However, for our simulations in
Section 5 we use the finitely converging spectrum
balancing framework described in [24]. It is based on a
linear problem (LP) which is iteratively updated using the
per-subcarrier solutions of the problems in (8). The dual
solution of this LP comprises the Lagrange multipliers
which are used to define the subproblems in (8).

3. Branch-and-bound (BnB) for discrete bit and power
allocation

Solving the per-subcarrier problem in (8) can be
regarded as a sequence of U consecutive decisions, each
assigning a certain number of bits to one of the U users.
This can be illustrated in form of a decision tree, where
decisions are made starting with that of user 1 (cf. Fig. 1).
A node at tree-depth u corresponds to a vector of bit-
allocations r® e RY of “already loaded users” 1 up to u. The
feasible set of rates Q, corresponds to a subset of all leaf-
nodes £ at the bottom of the search-tree. Branch-and-
bound (BnB) [26] is a systematic and exact search method
for finding the leaf-node r¥) € Q. = £ with minimum
objective value f(p(rY),w+v,w+2), ie., for solving the
subproblem in (8). The algorithm starts at the root node of
the tree (cf. Fig. 1) and at each node makes a branching
decision, i.e., decides which node to explore next at the
next-lower tree-level. The second key component of the
method beside the branching rule is the computation of
lower-bounds on the objective values of any leaf-node
belonging to a subtree rooted at node r®, cf. Section 3.1.
However, the exact computation of the tightest possible
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» User 1

o .- 9 --» UserU
Fig. 1. Illustration of the search-tree associated with a per-subcarrier
problem in (7).

lower bound would necessitate the solution of the pro-
blem (cf. (1), (2), (4), and (8))

minimize > V)P~ (Wi 4 2)r) +
r €{0,0,..., Ohu+1<i<U, {ieu|i < u)
pie0pilvieUu
D> (Wi v)P—(Wi+2)ri) (9a)
{ieut|i > (u+1)}
subjectto  HY<r(p), 1<i<uy, (9b)
ri<rip), u+l<i<U, (90)

which differs from the original problem in (8) only in the
fact that the rates of users i,i<u, are fixed at r®.
Consequently, solving (8) with a BnB algorithm using
the tightest lower bound would be as costly as solving
(8) by a brute-force enumeration of Q. However, the
efficiency of the BnB algorithm comes from the use of
efficiently computable lower-bounds to the optimal
objective of the problem in (9), which can be used to
infer the suboptimality of a subtree (“pruning” the sub-
tree) based on the comparison of this lower-bound with
the objective value of the best (“incumbent”) solution
r'¥Y € 9, found so far. The algorithm only stops when it
has either visited or pruned all leaves of the tree. Hence,
there is a complexity tradeoff in BnB schemes between
the computation of lower-bounds and the exploration of
the tree.

3.1. Computing lower-bounds in BnB schemes

Before proposing explicit BnB methods we will
describe the computation of bounds which are less com-
plex than the solution of the problem in (9). We gener-
ically denote such a lower-bound for the subtree rooted at
r™ as

ll‘“"(pmin‘rmaX) — (W _._v)Tpmin_(vVV_’_l)Trmax’ (10)

where p™n" and r™2* are chosen appropriately, cf. [6] for a
specific BnB scheme dependent choice. A selection
which gives a valid lower-bound in (10) to the
exact lower bound in (9) is p;“i“ =p;(rW), rmax = rE“’,
1<i<u, and pM =0, r™* =0, (u+1)<i<U, where
pi(r®)=p;(r),i €U, as defined in (1) with r € RU being
formed by extending r® with (U—u) zeros. This selection
results in a valid lower-bound as (a) the rates of already
loaded users are fixed while those of the remaining users are
constrained by 0; (b) the power needed to support the rates

r™ in (9b) monotonously increases with the crosstalk noise
and is therefore the lowest when the power of the remaining
users is the lowest possible (i.e., 0); and (c) the objective in
(9a) is monotonously increasing in the powers and decreas-
ing in the rates. In Section 3.2.1 and 4 we will see two less
conservative ways of obtaining bounds by modifying p™n
and r™* for users i, where (u+1)<i<U.

Another means of efficiently lower-bounding
f(p(r),w +v,w+ ) for all leaf nodes r in the subtree rooted
at r® also derives from the above key observation that
the power needed to support the rate r;(p) in (9b) and (9¢)
without interference among users lower-bounds the cor-
responding values with interference. A relaxation of the
problem in (9) in this respect can be formulated as
D W)= Wi+ A)ri) +

{ieU|i < u}

minimize
ri e {0,0 ,,,,, 0},
piel0plu+l<i<U

Z (Wi +v)p;— (Wi + 2)T7) (11a)

{ieu|i = (u+1)

subject to rislog2<l+HLPi>, u+l1<i<U, (11b)
I'N;
which differs from the exact lower-bounding problem in
(9) in that the powers p; for users i, i < u, are fixed at the
above mentioned lowest values p;(r') and the constraints
in (9b) are neglected. Furthermore, the total received
noise in the rate functions r;(p) in (9c) is lower-bounded
by considering only the interference from already loaded
users, which by the same argument as above leads to the
lower-bound on the received noise given by N;=N;+
Pi<j< (Hip;x®), for the remaining users i,(u+1) <i<U.
Solving the problem in (11) forms the basis of our search-
space reduction algorithm in Section 4 and its solution
with linear complexity in U is detailed in Appendix B.
Yet another relaxation of (9) in the form of a linear
program (LP) can be obtained in that we first apply a
continuous relaxation of the discrete rate variables, and
relax (9c) as in (11b). This relaxation would truly capture
the interference induced to the already loaded users
through the constraints in (9b). However, we find that
the improvements of the pruning process in our BnB
schemes are outweighed by its complexity and we will
therefore not considered it further.

3.2. Depth-first BnB (DFB) and best-first BnB (BFB) search

The symmetric BnB scheme in [6], which we refer to as
the regular splitting based BnB (RSB), branches by expand-
ing all subtrees in parallel. This leads to exponential worst-
case memory requirements, making RSB inapplicable for a
larger number of users. The second disadvantage, as the
simulations in Section 5.2 will reveal, is that testing infea-
sible allocations r e O, significantly contributes to the
search complexity of this method. The BnB schemes pre-
sented in the following remedy exactly these two disadvan-
tages by having linear worst-case memory requirements
and introducing an explicit mechanism to exploit the
impact of some users’ bit allocation on other users.
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3.2.1. Depth-first BnB

Depth-first BnB (DFB) explores the search-tree starting
from the node r¥’ =0, corresponding to the bottom-left
node in Fig. 1. Bits are iteratively increased, starting with
user U corresponding to the bottom level of the search-
tree. Algorithm 1 summarizes the DFB scheme in more
detail, with specific aspects being explained in the
remainder of this section. In lines 2-5 we initialize the
needed data structures and set the incumbent solution
based on the initial allocation r® passed as input to the
function. Lines 8-14 and 19-24 implement the searching
strategy (i.e., the update of the currently investigated
node in the search tree), with an update of the minimal
power allocation p™™ in line 11 as used in (10), and a
conditional update of the incumbent objective f* in line
13. In line 19 the subtree is pruned based on the
comparison of the current lower bound [b to the current
upper bounds. In lines 6 and 15-18 we perform further
tasks needed to improve the lower bound in (10), includ-
ing an update of r™*, and a call of Algorithm 2 to be
specified in Section 4.

Information regarding the maximum feasible! bit-
loading of user u, in a subtree rooted at level u—1, can
be used to produce an upper bound on user u’s feasible
bit-loadings in all neighboring subtrees rooted at level
u—1. This is made possible by the intuitive observation
that increasing the rate of any other user iel, i#u,
cannot increase the maximum feasible rate of user u as
increasing the rate of another user can only increase the
overall interference.

The basic idea is exemplified in Fig. 2, where once node
ng has been found infeasible it immediately follows that
also node n,, and n. must also be infeasible. Consequently,
having visited node n, in the DFB search over the tree
illustrated in Fig. 2 and found this node infeasible, the
upper bound on the maximum rate of user u can be set to
rMa = § when searching the neighboring subtrees rooted
at level u—1. In the general case, having found a node r®
infeasible, the DFB can set r™* —r®_¢ in the search of
the remaining neighboring subtrees at level u-1, i.e., in
any remaining subtree rooted at r-" where r{*~" ="
fori=1,...,u-2.

The value of the observation described above is that in
order to test the general feasibility of a node r™ requires
the computation of the unique power allocation p(r®™) as
the solution of a set of linear equations (cf. Section 2.1). By
using the upper bound on the rate of user u we can avoid
testing certainly infeasible nodes, thus reducing the
number of computations required in the BnB implemen-
tation. The procedure can be applied at any level of the
tree, although the upper bound r** must be re-set to 0
when the search back-tracks to level u—2.

! An arbitrary node r® in the BnB search-tree is termed feasible if it
can be extended to a feasible leaf-node r € Q; or, equivalently, a feasible
bit allocation for all users. Note that to determine if a node r is feasible,
it is sufficient to extend r® to a leaf-node r"’ along the all-zeros-path,
such that ¥’ =r for i=1,...,u and r'’=0 for i=u+1,...,U, and
verify the feasibility of r¥. If r¥) is infeasible (i.e., *Y¢Q;), no feasible
extensions exist.

Besides lowering the number of feasibility tests per-
formed (cf. the use of variable #™ in Algorithm 1), the
reduction of r'* also strengthens the lower bound in
(10), cf. lines 14 and 18 in Algorithm 1. Furthermore, the
initialization of the incumbent in lines 3-5 can be further
improved, e.g., by using heuristics [27] or the solutions of
other DSM algorithms, cf. Section 5. Note that DFB as well
as the scheme presented in the following section can
make use of an available objective bound & to improve
the pruning process, cf. line 19 in Algorithm 1 and [24]
where the specific relaxation gives such bounds as a
byproduct. The variable f”’ in Algorithm 1 serves as a
certificate in case no feasible solution with objective
lower than @ is found, i.e., as a lower-bound for the
objective of any (e.g., pruned) feasible allocation. In the
following we analyze the complexity of DFB.

Corollary 1 (Wolkerstorfer et al. [24, Thm. 2]). The com-
plexity of the search scheme DFB in Algorithm 1 for solving
the subproblem in (8) is polynomial in the number of users U
given Hy;/Hyy > o> 0, Vu € U.

Proof. While by [24, Thm. 2] we have that |Q;| grows
polynomially in U, we also see that the same holds for the
complexity per feasible allocation in the BnB Algorithm 1
(i.e., including the solution of a linear system for evaluat-
ing p(r) and the calculation of lower-bounds through (10)
or the solution of the relaxation in (11) as detailed in
Appendix B). Furthermore, the number of tested infeasible
allocations r € Q. can be bounded as follows: Assuming a
feasible bit allocation (e.g., r =0), the algorithm proceeds
by increasing the number of bit-steps for user U by one. If
this is feasible we obtain another feasible bit allocation,
while if it is not we return to the previous user U-1 and
increase its bit allocation by one, setting that of user U to
0. Following this procedure we find that the maximum
number of failed trials per feasible bit allocation is
bounded by the depth of the search-tree U, concluding
our argument. [O

3.2.2. Best-first BnB

Best-first BnB (BFB) differs from DFB in that branching
is not performed systematically starting from lower bit-
allocations and proceeding to higher ones. More precisely,
the algorithm branches the node which has the lowest
lower-bound in (10). Whether this is a good decision will
clearly depend on the quality of the lower-bound. Simi-
larly as in DFB we can make use of the maximum bit-
loading information ri?*. However, considering only sub-
trees rooted at level u—1 with equal bit-allocation r*~"
for all previous levels i, i<u—2 (cf. Fig. 2), in BFB we
might visit a subtree with higher rate rfi“jl” before visiting
a subtree with lower rate rfl"’:ll’ at level u—1. Therefore we
might not have access to the closest estimate r** we
would have obtained if we had visited the neighboring
subtree with lower rate r"" first. This deteriorates the
effectiveness of the bounds in (10) and the search as a
whole. For brevity we omit a detailed algorithm descrip-
tion of BFB as we found BFB inferior compared to DFB for
a larger number of users, cf. our results in Section 5.
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Fig. 2. Part of BnB search tree for the case of 0 =20 containing a set of three neighboring subtrees rooted at level u—1. Dashed lines and circles are used

to illustrate infeasible nodes.

Objective Value
(Original Problem)

Lower-Bound
(by Problem Relaxation)

— — — Target Objective
(e.g., by Incumbent Solution)

Bit-Allocation
Reduced Search-Space

Fig. 3. Illustration of the idea behind objective-based search-space
reduction (SSR).

4. A search-space reduction (SSR) scheme

In [24] an upper-bound on the size of the feasible
search space |Q;| for the per-subcarrier problem in (8)
was found which grows with decreasing crosstalk
strength. The bound has therefore its highest value if we
assume no crosstalk between users. This is however
counter-intuitive in face of the fact that a greedy bit-
loading algorithm would then solve (8) optimally, cf. the
proof of Theorem 1 and the fact that the per-subcarrier
problem decouples into single-user problems in the
absence of interference as seen in Section 3.1. In the
following we suggest a method which can take advantage
of low-interference cases in order to reduce the size of the
search-space for the exact problem in (9) corresponding
to a subtree rooted at r®.

The idea behind our SSR scheme is to first solve the
lower-bounding problem in (11) which partly neglects
inter-user interference and therefore is a relaxation of the
exact problem in (9). Then, starting from the optimum of
the lower-bounding problem, we search the bit-alloca-
tions with a lower-bound (i.e., objective value in the
lower-bounding problem) below the real objective (i.e.,
with fully considered inter-user interference) of a known
feasible solution for the exact problem in (9). This idea is
illustrated in Fig. 3 where it is shown how a lower bound
on the objective provides a tightened superset of all bit-
allocations that can improve upon the target objective.
Correspondingly, the SSR scheme in Algorithm 2 contains
two parts, where in the first one in lines 4-8 we solve the
lower-bounding problem in (11) as described in Appendix
B and search a feasible target objective value L"*"®®" for the
exact problem in (9). Note that also the objective value of
the current global incumbent solution can be used as the

target objective value. While the incumbent objective
might be lower than any feasible objective value in the
subtree considered in the exact problem, the SSR scheme
will not exclude any solution in the subtree from the
search-space that has a better objective than the current
incumbent and therefore supports the pruning of sub-
optimal solutions. The second part of the SSR scheme is
detailed in lines 10-14 of Algorithm 2 and concerns the
search-space reduction. As seen in Appendix B the lower-
bounding problem can be solved by separate problems for
users i, u+1 <i<U. Hence, also the minimum and max-
imum rate in the subtree rooted at r® of user i can be
found by searching, starting from the optimum of the
lower-bounding problem, the minimum and maximum
rates with lower-bound below the target objective value.

This SSR method can be employed at any level of the
search-tree of BFB and DFB, cf. line 16 in Algorithm 1, but
only on the root node in RSB. Note also that minimum
power/maximum bit-loading information is obtained by
SSR which is used for computing lower-bounds in line 18
of Algorithm 1.

5. Simulation results
5.1. Performance comparison to a general-purpose solver

In order to motivate our problem-specific BnB and
variable-range reduction mechanisms DFB and SSR we
compare them to the open-source general-purpose solver
for non-convex mixed-integer problems “Couenne” [18]
in terms of CPU time for various sum-rate maximization
problems.? In order to have problem instances that are
easier to solve by general purpose software we base the
simulations on five user upstream transmission ADSL2
scenarios,> with topologies generated by uniformly

2 Both algorithms solve, for each scenario, the per-subcarrier pro-
blem in (8) for all subcarriers c € C only once, that is, for the set of
weights and Lagrange multipliers that are output in the first iteration by
the sum-rate maximizing master LP [24] after being initialized by the
solution of the bit-loading scheme in [14]. For Couenne we apply default
parameters, except for the branching priority of continuous variables
which was set lower than for integer variables. The platform is Windows
7 on an Intel quad-core system running at 2.4 GHz with 4 GB of RAM.

3 The parameters for ADSL2 and VDSL follow the corresponding
standards in [28] (Annex B.1.3) and in [29] (band plan 997-M 1 x-M, a
flat spectral mask constraint at —60 dBm/Hz, alien crosstalk according
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Fig. 4. Cumulative distribution function for the CPU time t“V of the proposed combined search mechanism (DBF and SSR) and an applicable general-
purpose solver under a time-out of 2 min in randomly sampled five user ADSL2 scenarios.

sampling the users’ line-lengths between 500 m and
2000 m. The used crosstalk channel data is based on
measurements in [22] and a random cable selection as
the number of measured lines exceeds U. Fig. 4 depicts
the cumulative distributions of CPU time for our com-
bined scheme (DFB and SSR) and for Couenne. The main
observation from these results is that there is a subset of
the per-subcarrier problems which could not be solved by
Couenne in the set time-limit of 120 s. Hence, the devel-
opment of problem-specific techniques for the problem at
hand is qualitatively justified.

5.2. Comparison of BnB methods

In the following we investigate the average complexity
of solving the subproblems in (8) under the three BnB
schemes outlined in Section 3. In order to study a more
challenging DSM case we use numerous VDSL upstream
scenarios as described below and a 99% worst-case cross-
talk model [11]. For tractability we restrict ourselves to
the simulation of every 50th subcarrier out of the more
than 1600 subcarriers under fixed values of weights
wy, =0, w,=1/U, and identical Lagrange multipliers
Au =2, vy =0, Yu € U. To capture the performance of these
methods exclusively we do not make use of incumbent
initializations. Also, we avoid machine dependency of our
performance evaluation to a large extent by focussing on
two reproducible complexity merits: the number of
visited feasible leaf nodes (rate allocations) r € Q; and
the total number of visited leaf nodes r € £ (corresponding
to the number of solved matrix equations [4] in
the power evaluation p(r) for bit allocations r), where the
latter also includes the tested allocations r € O, which turn
out infeasible. Furthermore, we neglect the complexity of
other logical operations needed to perform the BnB searches.
As explained in Section 3.2 the RSB scheme has more severe
memory requirements compared to our two BnB search
proposals, and hence our comparisons favor this previously
proposed scheme. The network scenarios are based on a set

(footnote continued)

to ETSI VDSL noise A), with I’ =12.8 dB and 0 = 1. The background noise
for ADSL2 is set to N, = —120 dBm/Hz, while that for VDSL is chosen as
—140 dBm/Hz. The maximum bit-allocation 6 for the single-carrier
simulations in Sections 5.1- 5.3 was set to 16 as it was used in the BnB
simulations in [6], while for multi-carrier simulations we use a standard
compliant value of 15.

of specified line lengths {200, 400,600,800} m, and forming
all U-combinations with repetitions* to allocate users to
these lengths, cf. [27] for details.

Fig. 5(a) and (b) show the total number of visited leaf
nodes and the number of visited feasible leaf nodes,
respectively, over the subcarrier index under different
search schemes for six users. The bend of the curves at
index 500 is due to the use of two non-adjacent frequency
sub-bands. In general we find that the complexity in
solving the per-subcarrier problems (8) decreases in all
schemes with the subcarrier frequency due to the increas-
ing crosstalk coupling per unit-length and channel
attenuation. In a *“naive search” all allocations in
*xue{0,0, . ..,@u} < £ are evaluated, where we define 0,
éus@, as the maximum number of bits user u can
transmit without interference, cf. Fig. 5(b). However, we
see that the number of feasible leaf nodes |Q;| in the
search-tree, labelled “all feasible”, is far below this num-
ber. This complexity reduction can already be achieved by
a modified exhaustive search [5, Algorithm 2]. Further-
more, we observe a reduction in the number of visited leaf
nodes by the BnB schemes BFB, DFB and RSB, with DFB
performing best over the whole range of subcarrier
problems, cf. Fig. 5(b). This can be further explained by
comparing Fig. 5(a) and (b), where we see that a large part
of the complexity of RSB lies in the evaluation of infeasible
allocations, which is avoided by our proposed BnB
mechanism in Section 3.2.1. Regarding the comparison
in average sum-complexity over subcarriers in Fig. 5(c)
we see that for less than four users RSB performs better
than DFB. However, for a higher number of users we
observe a growing gap in complexity between the two
schemes with DFB performing better, both, in terms of
computational and memory complexity.

5.3. The impact of the Lagrange multipliers on the
complexity

We use the same simulation setup as in the previous
section and demonstrate in Fig. 6(a) the dependency of
the average (over users and network scenarios) search
complexity and the average achieved rates on the
Lagrange multipliers 1, =4, u € U, associated with the

4 For example, for U =6 the number of thereby generated scenarios
is 84.
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problems in (8) with W, =1/U, 4, =1073, vu e ¢4; in (a) and (b) over the subcarrier index for U =6; in (c) the sum-complexity for all per-subcarrier

problems over the number of users U.

rates. Our SSR scheme is shown to successfully reduce the
search space for lower values of 4, where we note that the
algorithm is only executed once at the root of the search-
tree, cf. the curve labelled “DFB + SSR, No Bounding”.
Higher values of A on the other hand lead to higher
optimal per-subcarrier rates and therefore to stronger
interference levels among users at the optimum. This on
the other hand decreases the quality of the lower-bound
computed from the interference-free problem in (11) and
therefore the performance of the SSR scheme. However,
DFB outperforms RSB for larger values of 4, making the
joint application of SSR and DFB search outperform RSB
over the whole range of A, cf. the curve labelled
“DFB+SSR, With Bounding”. Furthermore, as explained

in Section 3, RSB has a worst-case storage requirement
that increases exponentially in the number of users, while
that of DFB increases only linearly. Altogether we argue
that DFB is the preferable BnB scheme, especially in
scenarios with a larger number of users.

Another aspect in Fig. 6(a) is that the average search
complexity of all shown BnB schemes only increases up to
a certain value of 4, after which it decreases again. As the
number of feasible allocations is independent of A we
attribute this behavior to the lower-bound [ (p™in, rmax)
in (10). We argue that during BnB search there is typically
a good bound r™, available, be it either based on the
search-region definition as in RSB [6] or on message
passing of maximum bit-loading information as in DFB
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the (optimal) achieved average per-user and per-subcarrier rates.

and BFB. However, lower-bounds p™" on the optimal
power consumption of a user i, u<i<U, for a subtree
rooted at r®™ are harder obtained, where notably our SSR
scheme allows us to get lower-bounds other than
p}“i“ =0, cf. line 14 of Algorithm 2. Altogether we have
stronger lower-bounds for either lower values of 4 where
the optimal power levels are small, or higher values of A
where the total weight (W+ 4) on the rates is dominant.
The multiplier 4 controls the rates’ weight in the
objective f(p,w+v,w+4) defined in (4). Fig. 6(b) illus-
trates the average per-user rate over the multiplier A in
percent of the maximum achieved value (at 1 =10) and
compares it to the complexity of our combined search
method (DFB and SSR) taken from Fig. 6(a). We observe
that a wide range of low average rates is achievable at
fairly low complexity. For example, we find that for
,=3x10"% our combined search method (DFB and
SSR) visits less than 0.8% of the total number of feasible
leaf nodes in the search-tree, while the resulting average
rate is more than 30% of the maximum one at 1= 10.

5.4. The impact of target sum-rates on the complexity of
DSM

Differently to the previous section we will now
directly analyze the impact of the target sum-rates on
the complexity of a dual optimal DSM scheme as a whole
in various sum-power minimization problems. The

simulation is based on a single ADSL2 topology with 16
users transmitting in upstream direction and situated at
800,850, ...,1550 m distance from the deployment point,
and we use the average crosstalk per unit-length between
all measured cables for the calculation of the crosstalk
couplings. A maximum total number of evaluated feasible
allocations of 10° was set to limit the simulation time.
From the simulation results shown in Fig. 7 we find that
the complexity of our dual-optimal DSM algorithm qua-
litatively increases with the target sum-rates. However,
we also note that the sum-rate maximization (cf. the
point at the bottom-right in Fig. 7) had again a complexity
which was lower compared that of sum-power minimiza-
tion at the highest shown target sum-rates. This is most
likely due to the fact that sum-power constraints were
not tight in this scenario and the multipliers v are
consequently all zero. Therefore a good lower bound on
the objective can be computed by knowing a good upper-
bound on the number of bit-steps that can be loaded, as
obtained in our DFB search, cf. Section 3.2.1. This observa-
tion is also in accordance with the interpretation of
Fig. 6(a) in Section 5.3.

5.5. Performance evaluation of greedy multi-user bit-loading
We will next investigate the suboptimality in sum-rate

maximization problems of two multi-user discrete bit-
loading (DBL) approaches: the greedy multi-user DBL
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(MDBL) scheme in [14] and single-user bit-loading [12]
under worst-case crosstalk noise computed using the
users’ PSD masks and the (measured) cross-channel data.
The performance metric we consider for these two heur-
istics is their performance ratio defined as

*
3 )
Hrp) = Pheur ’
R,P)

(12)

where we denote the objective value of a heuristic bit-
loading scheme achieved by a feasible solution of the
primal problem in (3) as P}}%"i,r) > Py p)- For example, in the
considered case of w=0, meaning a pure sum-rate max-
imization problem, we have Dff p, < P}, < 0 and it there-
fore holds that pig p) > 1. The dual optimal objective Djy p,
in (5) is computed by our dual optimal DSM scheme,
consisting of the optimal Lagrange multiplier update
algorithm in [24], initialized at the solution under MDBL,
and using our optimal techniques DFB and SSR for the
subproblems in (8). In order to obtain a clearer picture of
the duality gap (PTR,m—DfR,P)) in realistic scenarios we also
derive primal feasible solutions to the problem in (3)
by applying the heuristic described in [24] on top of our
dual optimal DSM scheme. We simulated 1000 ADSL2
scenarios with 10 users and other simulation parameters
and a random topology and cable selection as described in
Section 5.1.

Our results are shown in Fig. 8. Regarding the cumulative
distribution® for our extended dual-optimal scheme we see

5 In the computer science literature [30] this empirical distribution
is referred to as “performance profile”.

that the performance ratio pug p, was in fact nearly 1 in all
tested scenarios. More precisely, its suboptimality and
therefore the duality gap is below 0.01% of D p, in more
than 99.6% of the scenarios, with a confidence of 99%
according to a t-test. Similarly, the suboptimality of MDBL
is guaranteed to lie below 1% in more than 97.7% of the
scenarios, demonstrating the near-optimality of MDBL in
realistic ADSL2 scenarios. Surprisingly even the conservative
mask-based single-user DBL approach leads to a suboptim-
ality of below 5% in more than 91.1% of the scenarios.

6. Conclusions

We propose an optimal low-complexity algorithm for
the solution of a discrete-rate, multi-user, single-subcar-
rier power control problem. This algorithm is applicable
in any Lagrange relaxation based dynamic spectrum
management (DSM) scheme for interference-limited
multi-carrier digital subscriber lines (DSL). Its compo-
nents are a branch-and-bound (BnB) scheme with linear
storage requirements and an efficient problem-specific
search-space reduction (SSR) technique. Simulation
results show a dependency of the per-subcarrier BnB
search complexity with the rate-related Lagrange multi-
pliers, confirming our intuition that the difficulty of
solving energy-minimization problems increases with
the target sum-rate by trend. The SSR scheme is based
on a convex problem relaxation where interference is
omitted based on the search-tree. Correspondingly, it is
seen to be effective in the case of low target sum-rates,
higher background noise, or low-bandwidth DSL systems
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such as ADSL2. Under such a setting we demonstrate that
DSM problems with twice as many users can be solved
optimally compared to previously published numerical
results. With our algorithm we were able to present
optimal results in 1000 randomly generated 10-user
ADSL2 scenarios, and to show that the average gap to
the optimum of a heuristic multi-user bit-loading scheme
is less than 1% in more than 97% of the scenarios.
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Appendix A. Proof of Theorem 1

Proof. We assume U=1 and hence all vectors in this
appendix are in R, . First we prove the optimality of a
greedy bit-loading (GBL) algorithm which, starting from
r° = 0,vc € C, sequentially loads 0 bits where they incur the
least extra cost fg,,=wu(PES+0)—pE)—w,0. We
define the set of possible bit-steps &, [£|=3".|95]. a
function which assigns each element of £ the associated cost
fr, r¢ being the rate after the bit-step, and the matroid (£,7),
T < &. Optimality of GBL follows now from the optimality of
greedily picking elements out of £ [31, Sec. 7.5] and the
monotonicity of fr. in r€. It follows that GBL demands the
minimum sum-power for a given target sum-rate. With this
in mind we denote the optimum of (3) for neglected sum-
power constraints (3c) by P*(R). We denote the maximal
achievable sum-rate by R =" . max{r[r¢ € Q%) and the
minimum number of loaded bits after which all remaining
possible bit-steps have a positive cost by Re R, ie,
R = ming{R|3r¢ € O%,c € Y o1 <R, fic . g > 0,¥C € C}. By
optimality we have that P*(R) is constant for R < min{R,R}.
We will therefore focus on the case R <R, where P*(R) is
strictly monotonously increasing in R for R>R due to
optimality of GBL. Convexity of P*(R) over 0 <R <R follows
from

oP*(R—k,0)+ BP*(R+kg0) (A.1a)
= (P*(R)—ky€5)+ P(P*(R) +kpep), (A.1b)
= P*(R)—otkco,+ Pkpey > P*(R), (A.1c)

where in (A.1a) we form a convex combination of any two
target sum-rates in the given interval with lower and higher
sum-rate than R (i.e., k;,k; > 0), respectively. In (A.1b) we
use the optimality of GBL, defining ¢, = P*(R)—P*(R—0) and
g =P*R+0)—-P*R). In (Alc) we use o+f=1 and
ok, = ks as we are interested in the convex combination
at sum-rate R, and again the optimality of GBL implying
€4 < €5. Next we regard any convex combination of feasible
solutions to our primal problem in (3), which are represented

by the three-dimensional set

T
o= { {Zf(pc,w,w),zrc(pc),ZpC]

ceC ceC ceC

peQce C}.

(A2)

By Carathéodory’s theorem [25, Prop. B.6], for U=1 any
point in the convex hull of @ can be represented by the
convex combination of at most four points in Q. We define
target sum-rates R € (R|R =k0,k € £} and pick any such
combination with sum-power values P,,Pg,P,,Ps, with
achieved sum-rates R,,Rg, Ry, Rs, and with a set of weights
of3,7,0>0, such that oR,+pRsz+yR,+JRs=R and
oP, + fPg+yP,+0Ps <P. The resulting objective value of
the combination is given as, cf. (3a) and (4),

W (P, + By + P, +3Ps)—W R
> aP*(Ry)+ SP*(Rp) +YP*(R))+ IP*(R,) (A.3a)

> P*(aR,+ fR;+ 7R, + OR;) =W’ P—W'R, (A.3b)

where the second inequality follows from the convexity of
P*[R) and where P is the minimal sum-power corresponding
to a feasible solution for (3), obtainable by GBL as explained
above. Hence, if there exists such a convex combination
which meets the sum-power and sum-rate constraints, we
can compute a feasible solution to the primal problem in (3)
by GBL which has a lower or equal objective. The reverse
holds as a primal feasible solution is in Q. The proof follows
from tight duality between the optimization over convex
combinations meeting the sum-power and sum-rate con-
straints, and the dual problem in (5) [24]. O

Appendix B. Solution of the relaxation in (11)

In the following we detail the exact solution of the
problem in (11) and use the short notation [r{(p°), and
[rs(p)1p to denote the rate rounded up or down to the
next integer multiple of the bit-step 0, respectively. The
problem in (11) is separable among users i, (u+1) <i<U.
The continuous relaxation of each of those separated
problems is convex and given as
I'N;
Hj;

minimize Fir) = Wi +v)RT—1) = —(W;+ s, (B.1)

rief0,0; 1
where é,fmd = min{@, Llog2 <1 + %)J H}and we use the
fact that the constraints in (11b) hold with equality at
optimum to replace the variable p;. The problem in (B.1)

can be given analytically, for each remaining user i,
(u+1) <i< U independently, using first-order optimality

conditions &f ;(r;)/or; =0, leading to

™ — min/{ log, L’N ,9;“0‘1 , wW+<i<U,
' (Wi +vplog(2)N;I"

(B.2)
with corresponding power allocation
PPy = (211 1) ;N' u+<i<U. (B.3)

un
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Inserting (B.2) in (B.3) we can interpret p{™(r{™") as the
water-filling solution [32, Ex. 5.2] for the water-level
(W; +v)/((W; + A)log(2)) under bit-cap and PSD mask con-
straints, respectively. The solution 7;, p;, (u+1) <i< U, of the
discrete problem in (11) can then be computed by rounding
the user’s rates r}mp to one of the two nearest integer
multiples of 6 with the lower objective, i.e.,

[Fi.pi] = argmin {(W;+v)pi— (Wi + A1}

{ri e {Lr{™ 10.11™ 10},
~mod
Di =P,Fmp(7’i)\ri <0; '}
(B.4)

This holds due to the aforementioned convexity and user-
independence.
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